Automated crevasse mapping: assisting with mountain and glacier hazard assessment

Chris Williams¹, Martin O'Leary², Adrian Luckman², Tómas Jóhannesson³ and Tavi Murray² EGU 2018, 12th April 2018

[2] Department of Geography, Wallace Building, Swansea University, Singleton Park, Swansea, SA2 8PP

👖 [3] Icelandic Meteorological Office, Bústaðavegur, 7-9, 108 Reykjavík

British Geological Survey NATURAL ENVRONMENT RESEARCH COUNCIL

Icelandic Met Office

Climate Change Consortium of Wales

Consortiwm Newid Hinsawdd Cymru

Why?

Initial development

surface expression of glacier movement dynamics

More high resolution data available today than ever before

- satellite imagery, UAVs, mobiles
- data only valuable if they are used!

Crevasses pose a serious danger to:

- skiers
- climbers
- those effecting higher altitude rescue operations

Glaciers are dynamic!

- crevasses patterns change
- potential hazard areas evolve
- manual mapping is time consuming

This is...

- Generalising surface crevasse patterns
- Providing additional information
- Only as good as the data on which it is based
- Based on user defined search variables

This is not...

- Mapping/extracting individual crevasse features
- Supposed to be fool-proof solution

Existing approaches

"...visual interpretation of crevasse patterns is often difficult and misleading" (Haeberli et al., 1989)

Existing approaches

"...visual interpretation of crevasse patterns is often difficult and misleading" (Haeberli et al., 1989)

Existing approaches

"...visual interpretation of crevasse patterns is often difficult and misleading" (Haeberli et al., 1989)

Problems

- Time consuming
- Code often not available!
 - Presence/absence
- Complex nature of crevasses

What we present

- Fast, scalable and repeatable procedure
 - Generalisation of areas in an image
 - Extraction of metrics
 - spacing, orientation, SnR

LFMapper: Using the Fast Fourier Transform for feature classification

Rotationally symmetrical

Rotationally symmetrical

Centre point represents the mean brightness of the image

...increasing frequency = further from origin

...increasing frequency = further from origin

...increasing frequency = further from origin

FFT: Fast Fourier transform

–100 0 100 Freq. distance from origin

-200

-100

Freq. distance from origin

3. Smooth and Gibbs effect removal

4. Noise removal

Freq. distance from origin

3. Smooth and Gibbs effect removal

4. Noise removal

3. Smooth and Gibbs effect removal

Freq. distance from origin

3. Smooth and Gibbs effect removal

3. Smooth and Gibbs effect removal

- 1. Identification of maximum peak
- 2. Calculate *signal-to-noise ratio*
- Calculate distance from peak to origin (convert units from frequency to space)
- 4. Calculate orientation of peak – rotational symmetry!

Effect of window size

Effect of window size

The code

- > All written in Python
- Available on Github
- Subject to further development (and contributions)
- GNU General Public License

https://github.com/Chris35Wills/LFMapper

https://zenodo.org/record/1216905#.Ws4JVH--m00

Application to Hofsjökull, Iceland

- Third largest glacier in Iceland (~900 km²)
- Located in the central highlands
- Large mass balance observation network (Icelandic Meteorological service)
- Mostly negative mass balance observed since 1995, positive in 2015
- Atop an active subglacial caldera volcano
- Airborne LiDAR data available at 2 m resolution
 - 2008/2010, 2013

Spacing – window: 155 m | step: 35 m

Orientation – window: 155 m | step: 35 m

Hazard mapping potential

- Spacing and signal-to-noise key
- Outputs are a guide not a final decision
- Opportunity for further categorisation and investigation
 - Small spacing & low likelihood
 - Medium spacing and medium likelihood

.etc.

Hazard mapping potential

- Spacing and signal-to-noise key
- Outputs are a guide not a final decision
- Opportunity for further categorisation and investigation
 - Small spacing & low likelihood
 - Medium spacing and medium likelihood

.....etc.

Benefits

Scalable – 25cm – 100's m Quality of output determined by quality of input Area ID for further investigation

Limitations

Nature of glacial environment – needs snow free images Where an image is of both a glacier and non-glaciated terrain, the latter must be clipped

Warnings

Output must be verified by an expert Provides only an initial assessment of potential crevasse hazards

Potential applications

Crevasse mapping

- search and rescue
- providing information to users (skiers, mountaineers...)
 - maps of a given summer may be useful for the following winter...

Other applications

- sand dune migration
- rock core fracture pattern analysis
- geological lineament detection

An automated approach to characterising linear features within imagery. Developed using glacier surface data, providing information on crevasse orientation and spacing. Outputs provide a first pass crevasse map useful for emergency planners in glacial environments.

> Slides http://chris35wills.github.io/publications/

Code <u>https://github.com/Chris35Wills/LFMapper</u> <u>https://zenodo.org/record/1216905#.Ws4JVH--m00</u>

Please quote the DOI if you use the code!

<u>chrwil@bgs.ac.uk</u>

British Geological Survey

References and further reading

- Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., Grigsby, S., Glacier crevasses: Observations, models, and mass balance implications. Reviews of Geophysics, 54 (10), pp119-161, 2015. <u>https://doi.org/10.1002/2015RG000504</u>
- Haeberli, W., Alean, J. –C., Müller, P. and Funk, M., Assessing risks from glacier hazards in high mountain regions: some experiences in the Swiss Alps. Annals of Glaciology, 13, pp96-102, 1989.
- Herzfeld, U. C., McDonald, B., Weltman, A., Bering Glacier and Bagley Ice Valley surge 2011: crevasse classification as an approach to map deformation stages and surge progression. Annals of Glaciology, 54 (63), 2013. <u>http://doi.org/10.3189/2013AoG63A338</u>
- Herzfeld, U. C., Master of the Obscure—Automated Geostatistical Classification in Presence of Complex Geophysical Processes. Mathematical Geosciences, 40, pp587–618, 2008. <u>http://fdoi.org/10.1007/s11004-008-9174-4</u>
- Jóhannesson, T., Björnsson, H., Pálsson, F., Sigurðsson, O. and Thorsteinsson, T., LiDAR mapping of the Snæfellsjökull ice cap, western Iceland. Jökull, 61, pp19-32, 2011.

https://www.researchgate.net/publication/283994506_LiDAR_mapping_of_the_Snaefellsjokull_ice_cap_western_Icela nd

- Moisan, L., Periodic plus Smooth Image Decomposition. Journal of Mathematical Imaging and Vision, Springer Verlag, 2011, 39 (2), pp 161-179, 2011. <u>https://doi.org/10.1007/s10851-010-0227-1</u>
- Rivera A., Cawkwell F., Wendt A., Zamora R., Mapping Blue-Ice Areas and Crevasses in West Antarctica Using ASTER Images, GPS, and Radar Measurements. In: Kargel J., Leonard G., Bishop M., Kääb A., Raup B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books. Springer, Berlin, Heidelberg, 2014. <u>https://doi.org/10.1007/978-3-540-79818-7_31</u>
- Röthlisberger, H., Sliding phenomenon in a steep section of Balmhorngletscher, Switzerland. Journal of Geophysical Research, 92 (B9), pp8999-9014, 1987. <u>https://doi.org/10.1029/JB092iB09p08999</u>
- van der Veen, C.J., A Numerical Scheme for Calculating Stresses and Strain Rates in Glaciers. Mathematical Geology, 21 (3), pp366-377, 1989. <u>https://doi.org/10.1007/BF00893696</u>

Sensitivity – step size increases coarseness of output

Crevasse spacing (m)

