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Introduction

 Large terrain datasets provide the foundation for the work
carried out by the British Geological Survey (BGS) in developing
various environmental data products.

 It is vital that:
[1] datasets are kept up-to-date 
[2] any uncertainty associated with the dataset is effectively 

accounted for and communicated
 Hurdles hindering these considerations relate to:

 available memory
 processing time

 Presented is our workflow for creating derivative datasets from
a digital terrain model (DTM) considering uncertainty.

Methodology

 Fully automated Python workflow working on Geotiffs.
 Essentially convolves a D8 window across the dataset to derive

slope and aspect values along with associated uncertainty (cf.
Heuvelink et al., 1989).

 Data are tiled into 10 km areas according to the British National
Grid.

 Tile indexing enables fast searching and partitioning of
neighbouring GeoTiff tiles to deal with calculations at grid
corners.

 Calculations at each pixel are fully vectorised (numpy).
 Uncertainty simulations require the breaking down of each tile

into manageable blocks to meet memory requirements.
 Outputs aspect/slope grids with associated uncertainty.

Results and delivery

 Provision of derivative datasets and uncertainty surfaces to be
integrated into the BGS product development workflow.

 Minimizes data that need to be held in memory: reducing
memory requirements and processing time.

 Increases ability to re-deploy as required to incorporate data
updates.

Conclusions and next steps

 Moving window operator can be adjusted as required (just pass
the function e.g. for roughness etc.)

 Provides the BGS with a ready-to-go uncertainty simulator.
 Uncertainty products will be fully incorporated into all future

products and associated updates.

Examples of existing approaches for storing and
processing geospatial data

 Once you have lots of tiles and you want to store,
query and process them more efficiently, it’s worth
investing time in integrating them into some type of
framework.

 Below are some examples of available software
which can assist with various use cases, helping with
databases, visualisation and processing:

Proprietary
 ESRI Geodatabases
 Oracle Spatial

Open source
 GDAL
 PostGIS (no longer updating raster support)
 Open Data Cube
 Cloud Optimised Geotiffs (COG)
 Pronto Raster

Data structures

 The speed-up achieved by working with your data
once integrated into one of the above (or other)
frameworks is based on the underlying architecture.

 There are 2 core architectures for spatial data:
 Raster: Quad-tree
 Vector: R-tree

 New architectures are being developed to further
increase efficiency e.g. K2-tree (Brisaboa et al.,
2017).
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1. DTM preparation: data compilation

 Acquire all tiles.
 Merge into Ordnance Survey 

defined 10 Km regions.

Repeat as 
new data 
become 

available

 Create tile index (Python dictionary)
 Index details tile names and spatial extent.

 Get first 10 km tile.
 Use the dictionary to identify neighbouring

tiles based on spatial extent.
 Keep only data from the tile being worked on

and the pixels from the neighbours required
for edge processing.

 Define window size e.g. 3x3, 5x5 etc.
 Define function: for slope we use Zevenbergen

and Thorne (1987) and Horn (1981).

 Apply window function to each
pixel and its neighbours
 fully vectorised using numpy.

 For a second order slope
calculation, this will return the dx
and dy components for each pixel,
the values of which populate new
grids.

 Calculate slope and aspect given
the derivatives.

 Repeat until all pixels of the current 10km tile have been
processed.

 Write out new slope and aspect grids to disk.
 Move to the next 10 km tile.

 The 10 km tile to be used for a simulation is further split into 
manageable sized sub-tiles (hardware dependent).

 Use tile index to get neighbouring pixels from other tiles.

 Define the number of simulations to be run e.g. n=100
 For each simulation:

 Add noise (DTM uncertainty) to the sub-tile pixels.
 For each sub-tile pixel, calculate required derivatives (as per 

steps 3 and 4) and add to an empty grid - a new grid will be 
created for each simulation.

 Reduce the n grids to a single grid consisting of standard 
deviations of the calculated slope or aspect at each pixel.

# British National Grid

NG100Dic = {

'HL': [0,120000], 

'HM': [10000,120000], 

'HN': [20000,120000],

'HO': [30000,120000],  

'HP': [400000,1200000],

'HQ': [0,1100000],

'HR': [10000,110000], 

… } 
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What’s a quadtree?

http://desktop.arcgis.com/en/arcmap/latest/manage-data/geodatabases/types-of-geodatabases.htm
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://www.gdal.org/
https://postgis.net/
https://www.opendatacube.org/
https://www.cogeo.org/
https://www.osgeo.org/projects/pronto-raster/

