
Uncertainty simulation

Repeat on
next sub-

tile

Creation, curation and delivery of high
resolution spatial datasets ensuring
reliability for product development
Chris Williams*, Andrew Hulbert, and Russell Lawley
British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom
Contact: chrwil@bgs.ac.uk

Introduction

 Large terrain datasets provide the foundation for the work
carried out by the British Geological Survey (BGS) in developing
various environmental data products.

 It is vital that:
[1] datasets are kept up-to-date
[2] any uncertainty associated with the dataset is effectively

accounted for and communicated
 Hurdles hindering these considerations relate to:

 available memory
 processing time

 Presented is our workflow for creating derivative datasets from
a digital terrain model (DTM) considering uncertainty.

Methodology

 Fully automated Python workflow working on Geotiffs.
 Essentially convolves a D8 window across the dataset to derive

slope and aspect values along with associated uncertainty (cf.
Heuvelink et al., 1989).

 Data are tiled into 10 km areas according to the British National
Grid.

 Tile indexing enables fast searching and partitioning of
neighbouring GeoTiff tiles to deal with calculations at grid
corners.

 Calculations at each pixel are fully vectorised (numpy).
 Uncertainty simulations require the breaking down of each tile

into manageable blocks to meet memory requirements.
 Outputs aspect/slope grids with associated uncertainty.

Results and delivery

 Provision of derivative datasets and uncertainty surfaces to be
integrated into the BGS product development workflow.

 Minimizes data that need to be held in memory: reducing
memory requirements and processing time.

 Increases ability to re-deploy as required to incorporate data
updates.

Conclusions and next steps

 Moving window operator can be adjusted as required (just pass
the function e.g. for roughness etc.)

 Provides the BGS with a ready-to-go uncertainty simulator.
 Uncertainty products will be fully incorporated into all future

products and associated updates.

Examples of existing approaches for storing and
processing geospatial data

 Once you have lots of tiles and you want to store,
query and process them more efficiently, it’s worth
investing time in integrating them into some type of
framework.

 Below are some examples of available software
which can assist with various use cases, helping with
databases, visualisation and processing:

Proprietary
 ESRI Geodatabases
 Oracle Spatial

Open source
 GDAL
 PostGIS (no longer updating raster support)
 Open Data Cube
 Cloud Optimised Geotiffs (COG)
 Pronto Raster

Data structures

 The speed-up achieved by working with your data
once integrated into one of the above (or other)
frameworks is based on the underlying architecture.

 There are 2 core architectures for spatial data:
 Raster: Quad-tree
 Vector: R-tree

 New architectures are being developed to further
increase efficiency e.g. K2-tree (Brisaboa et al.,
2017).

References
 Brisaboa et al., 2017. Efficiently Querying Vector and Raster Data. The Computer

Journal, 60 (9). pp1395–1413.
 Heuvelink et al., 1989. Propagation of errors in spatial modelling. International

Journal of Geographical Information Systems, 3 (4), pp303-322.
 Horn, 1981. Hill shading and the reflectance map. Proceedings of the IEEE, 69 (1),

pp14-47.
 Samet et al., 1984. A Geographic Information System using Quadtrees. Pattern

Recognition, 17 (6), pp647-656.
 Zevenbergen and Thorne, 1987. Quantitative analysis of land surface topography.

Earth Surface Process and Landforms, 12 (1), pp47-56.

1. DTM preparation: data compilation

 Acquire all tiles.
 Merge into Ordnance Survey

defined 10 Km regions.

Repeat as
new data
become

available

 Create tile index (Python dictionary)
 Index details tile names and spatial extent.

 Get first 10 km tile.
 Use the dictionary to identify neighbouring

tiles based on spatial extent.
 Keep only data from the tile being worked on

and the pixels from the neighbours required
for edge processing.

 Define window size e.g. 3x3, 5x5 etc.
 Define function: for slope we use Zevenbergen

and Thorne (1987) and Horn (1981).

 Apply window function to each
pixel and its neighbours
 fully vectorised using numpy.

 For a second order slope
calculation, this will return the dx
and dy components for each pixel,
the values of which populate new
grids.

 Calculate slope and aspect given
the derivatives.

 Repeat until all pixels of the current 10km tile have been
processed.

 Write out new slope and aspect grids to disk.
 Move to the next 10 km tile.

 The 10 km tile to be used for a simulation is further split into
manageable sized sub-tiles (hardware dependent).

 Use tile index to get neighbouring pixels from other tiles.

 Define the number of simulations to be run e.g. n=100
 For each simulation:

 Add noise (DTM uncertainty) to the sub-tile pixels.
 For each sub-tile pixel, calculate required derivatives (as per

steps 3 and 4) and add to an empty grid - a new grid will be
created for each simulation.

 Reduce the n grids to a single grid consisting of standard
deviations of the calculated slope or aspect at each pixel.

British National Grid

NG100Dic = {

'HL': [0,120000],

'HM': [10000,120000],

'HN': [20000,120000],

'HO': [30000,120000],

'HP': [400000,1200000],

'HQ': [0,1100000],

'HR': [10000,110000],

… }

Kernel moves across
each pixel

New grids populated
with derivative values

Populate final grid
with slope and
aspect -> write to
disk

10 km tile of interest

Neighbouring
tilesKernel

Kernel
overlap

Extent of array to process

2. Tile indexing

4. Implement the function

5. Output

3. Define window function

i. Spatial area of
interest

ii. Binary
representation
of extent

iii. Raster block
break down

iv. Block quadtree

Figure adapted
from Samet et al.
(1984)

(i) (ii) (iii)

(iv)

Further split tiles

Multiple simulations

Simulation stack reduction

What’s a quadtree?

http://desktop.arcgis.com/en/arcmap/latest/manage-data/geodatabases/types-of-geodatabases.htm
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://www.gdal.org/
https://postgis.net/
https://www.opendatacube.org/
https://www.cogeo.org/
https://www.osgeo.org/projects/pronto-raster/

